Accelerated Kernel CCA plus SVDD: A Three-stage Process for Improving Face Recognition

نویسندگان

  • Ming Li
  • Yuanhong Hao
چکیده

kernel canonical correlation analysis (KCCA) is a recently addressed supervised machine learning methods, which shows to be a powerful approach of extracting nonlinear features for face classification and other applications. However, the standard KCCA algorithm may suffer from computational problem as the training set increase. To overcome the drawback, we propose a threestage method to improve the performance of KCCA. Firstly, a scheme based on geometrical consideration is proposed to enhance the extraction efficiency. The algorithm can select a subset of samples whose projections in feature space (Hilbert space) are sufficient to represent all of the data in feature space. Subsequently, an improved algorithm inspired by principal component analysis (PCA) is developed. The algorithm can select the most contributive eigenvectors for training and classification instead of considering all the ones. Finally, a multi-class classification method based on support vectors data description (SVDD) is employed to further enhance the recognition performance as it can avoid the repeated use of training data. The theoretical analysis and the experiment results demonstrate the effectiveness of improvements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D-3D face matching using CCA

In recent years, 3D face recognition has obtained much attention. Using 2D face image as probe and 3D face data as gallery is an alternative method to deal with computation complexity, expensive equipment and fussy pretreatment in 3D face recognition systems. In this paper we propose a learning based 2D-3D face matching method using the CCA to learn the mapping between 2D face image and 3D face...

متن کامل

Face Recognition Using Cca on Nonlinear Features

The face recognition (FR) system plays a vital role in commercial & law enforcement applications. Image resolution is an important factor affecting face recognition performance. The performance of face recognition system degrades by low resolution of face images. To address this problem, a super resolution (SR) method was introduced by Hua Huang and Huiting He [7], which uses Canonical correlat...

متن کامل

SVDD-Based Illumination Compensation for Face Recognition

Illumination change is one of most important and difficult problems which prevent from applying face recognition to real applications. For solving this, we propose a method to compensate for different illumination conditions based on SVDD(Support Vector Data Description). In the proposed method, we first consider the SVDD training for the data belonging to the facial images under various illumi...

متن کامل

Automatic Defect Detection for TFT-LCD Array Process Using Quasiconformal Kernel Support Vector Data Description

Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008